
International Journal of Information Technology and Knowledge Management
July-December 2009, Volume 2, No. 2, pp. 223-229

A NOVEL ALGORITHM FOR MINING FREQUENT ITEM-SETS
FROM LARGE DATABASE

Akhilesh Tiwari*, Rajendra K. Gupta** & Dev Prakash Agrawal*

Data Mining is the process of extracting interesting and previously unknown patterns and correlations from huge amounts of
data. Association rule mining, a descriptive mining technique of data mining is the process of discovering items, which tend
to occur together in transactions. As the data to be mined is large, the time taken for accessing data is considerable. In this
paper, a new association rule mining algorithm which generates the frequent itemsets in a single pass over the database is
presented. The algorithm mainly uses two approaches for association rule mining: The Partition approach, where the data is
mined in partitions and merges the result, and the Apriori approach that helps to find the frequent sets within each partition.
In order to evaluate the performance of new association algorithm, it is compared with the existing algorithms which require
multiple passes to generate the frequent itemsets. Experiments show that time taken for the database scan is more than the
time taken for candidate generation when the database size is large, which provides evidence that, focus to decrease the
database access time is a viable approach to the association rule mining.

Keywords: Association Rule, Apriori, Data Mining, Frequent Itemset.

* Madhav Institute of Technology & Science, Gwalior (M.P.), INDIA
** Union Public Service Commission, New Delhi, India,

Email: amity.tiwari@rediffmail.com

1. INTRODUCTION

Due to widespread computerization and affordable storage
facilities, an enormous wealth of information is embedded
in huge databases belonging to different enterprises. Such
databases, whether their origin is the business enterprise or
scientific experiment, have spurred a tremendous interest
in the areas of Knowledge Discovery and Data Mining
(Agrawal et al., 1993; Bjorvand, 1998; Landau et al., 1998;
Hunzikar et al., 1998; Aggarwal et al., 1999; Tiwari et al.,
2008). These areas have motivated allowed statisticians and
data miners to develop faster analysis tools that can help
sift and analyze the stockpiles of data, turning up in to
valuable and often surprising information. Data mining is
the act of drilling through huge volumes of data to discover
relationships, or answer queries too generalized for
traditional query tools (Agrawal et al., 1993). Data mining
is part of the process known as Knowledge Discovery in
Databases (KDD), which is the automated approach of the
extraction of implicit, understandable, previously unknown
and potentially useful information from large databases. For
extraction of such valuable information, the KDD process
follows an iterative sequence of steps that include data
selection and integration, data cleaning and preprocessing,
data mining and algorithm selection, and, finally, post
processing and knowledge presentation.

2. ASSOCIATION RULE PROBLEM

The problem of mining association rules is to generate all

rules that have support and confidence greater than or equal
to some user specified minimum support and minimum
confidence threshold respectively (Agrawal et al., 1994).
Association rule mining involves detecting items, which tend
to occur together in transactions, and the association rules
that relate them. Mining frequent itemsets is a fundamental
and essential operation in data mining applications including
discovery of association rule, strong rules, correlations,
sequential rules and episodes. Due to the huge size of data
and amount of computation involved in data mining, high-
performance computing is an essential component for any
successful large-scale data mining applications.

Association rule mining finds the set of all subsets of
items that frequently occur in many database records or
transactions, and additionally extracts rule on how a subset
of items influences the presence of another subset. Consider
I = {i

1
, i

2
, ……… i

m
} as a set of items. Let D, the task relevant

data, is a set of database transactions where each transaction
T is a set of items such that T is a subset of I. Each transaction
is associated with an identifier, called TID. Let A be a set of
items. A transaction T is said to contain A if and only if A is
a subset of T.

An association rule is an implication of the form A = >
B, where A and B are subsets of I and A � B is also a subset
of I. The rule A => B holds in the transaction set D with
support S, where S is the percentage of transactions in D
that contain A � B (i.e., both A and B). This is the probability,
P (A �� B). The rule A => B has confidence C in the
transaction set D if C is the percentage of transactions in D
containing A that also contain B. This is taken to be the
conditional probability, P (B/A). That is,

��� ������	�
����
��

�����
�
��
�����
�
���
�
���	�
��
����

COM6\D:\HARESH\11-JITKM

Support (A ��B) = P (A ��B)

Confidence (A ��B) = P (B/A)

The definition of a frequent pattern relies on the
following considerations. A set of items is referred to as
an itemset (pattern). An itemset that contains K items is a
K-itemset. The set {X,Y} is a 2-itemset. The occurrence
frequency of an itemset is the number of transaction that
contain the itemset. This is also known as the frequency or
the support count of an itemset. An itemset satisfies
minimum support if the occurrence frequency of the itemset
is greater than or equal to the minimal support threshold
value defined by the user. The number of transaction
required for the itemset to satisfy minimum support is
therefore referred to as the minimum support count. If an
itemset satisfies minimum support, then it is a frequent
itemset.

A frequent itemset is called closed if it does not have
any superset with the same support. A frequent itemset is
said to be maximal if it has no supersets that are frequent.
The collection of maximal frequent itemsets is a subset of
the collection of closed frequent itemsets, which is a subset
of the collection of all frequent itemsets. Maximal frequent
itemsets are necessary for generating association rules.

The problem of mining association rules could be
decomposed into two sub problems:

1. Find out all large itemsets and their support counts.
A large itemset is a set of items which are contained
in a sufficiently large number of transactions, with
respect to a support threshold minimum support.

2. From the set of large itemsets found, find out all
the association rules that have a confidence value
exceeding a confidence threshold minimum
confidence.

Since the solution of the second subproblem is
straightforward, here we are concentrating only on the first
subproblem.

3. PARTITION ALGORITHM

The partition algorithm (Han et al., 2000; Toivonen et al.,
1996; Yen et al., 2001) is based in the observation that the
frequent sets are normally very few in number compared to
the set of all itemsets. As the result, if the set of transactions
are partitioned in to smaller segments such that each segment
can be accommodated in the main memory, then the set of
frequent sets of each of these partitions can be computed.
Therefore this way of finding the frequent sets by
partitioning the database may improve the performance of
finding large itemsets in several ways:

� By taking advantage of the large itemset property,
this is that a large itemset must be large in at least
one of the partitions. This idea can help to design

algorithms more efficiently than those based on
looking at the entire database.

� Partitioning algorithms may be able to adapt better
to limited main memory. Each partition can be
created such that it fits in to main memory. In
addition it would be expected that the number of
itemsets to be counted per partition would be
smaller than those needed for the entire database.

� By using partitioning, cluster based and/or
distributed algorithms can be easily created, where
each partitioning could be handled by a separate
machine.

� Incremental generation of association rules may be
easier to perform by treating the current state of
the database as one partition and treating the new
entries as a second partition.

In order to achieve all the above advantages of
partitioning the transaction database, the partition algorithm
works as follows:

The partition algorithm uses two scans of the database
to discover all frequent sets. In one scan, it generates a set
of all potential frequent itemsets by scanning the database.
This set is a superset of all frequent itemsets, i.e. it may
contain false positives, but no false negatives are reported.
During the second scan, counters for each of these itemsets
are setup and their actual support is measured in one scan
of the database.

The partition approach of generating frequent itemsets
is given below:

P = partition_database (T); N = Number of partitions;

// Phase 1

for i = 1 to n do begin

read _in_partition (T
i
 in P)

L
i
 = generate all frequent itemsets of Ti using apriori

method in main memory.

End

// Merge Phase

For (k = 2; L
i
k ≠ Φ, i = 1, 2, ………, n; k++) do begin

1
G n k
k i iC Y L+=

End

// Phase II

For i = 1 to n do begin

Read _ in _ partition (T
i
 in P)

For all candidates c� CG compute s(c)T
i

End

LG = {c � CG / s(c)T
i
 ≤ σ}

Answer = LG

�
�����
����
����
��

������
�
������
�����	��	
�
��
��
��
������	� ���

COM6\D:\HARESH\11-JITKM

Here is the transaction database, A = {A1, A2, A3, A4,
A5}, assume σ = 20 %.

Here the database is partitioned in to 3 partitions say
ξT

1
,

ξT

2
,

ξT

3,
each containing 2 transactions. The first

partition ξT
1
contains 1 to 2 transactions, ξT

2
contains 3 to

4, and ξT
3
contains 5 to 6 transactions. Here the local support

is equal to the given support, which is 20%. So σ = σ
1
= σ

2
=

σ
3
= 20%.

The working of partition algorithm is as follows:

L
1
 : = the frequent sets from the partition in ξT

1,
which

are found using the apriori algorithm on ξT
1

separately.

L
2
: = the frequent sets from the partition in ξT

2,
which

are found using the apriori algorithm on ξT
2

separately.

L
3
: = the frequent sets from the partition in ξT

3,
which

are found using the apriori algorithm on ξT
3

separately.

In phase II, the candidate set as

C : = L
1
�

L

2
�

L

3

Later read the database once again to compute the global
support of the sets in C and get the final set of frequent sets.

3.1 Problem Specification

Most of the algorithms (Mannila et al., 1994; Savasere
et al., 1995; Agrawal et al., 1994; Yen et al., 2001; Park
et al., 1997; Houtsma et al., 1995; Coenen et al., 2001;
Tiwari et al., 2008) for discovering Frequent Patterns require
multiple passes over the database resulting in a large number
of disk reads and placing a huge burden on the I/O
subsystem. In order to reduce the burden on the I/O
subsystem in the case of large databases, a new association
rule mining algorithm, which uses both the partition and
the apriori approach for calculating the frequent itemsets in
a single pass over the database, is presented below.

This modified partition approach used for finding
frequent itemsets in single pass over the database consists
of two phases. The methodology involved in those two
phases is described below:

Phase 1:

In this phase, the partition algorithm logically divides the
database in to a number of non-overlapping partitions. These
partitions are considered one at a time and all frequent
itemsets for that partition (Li) are generated using the apriori
algorithm. In addition, when taking each partition for
calculating the frequent itemsets separately the local
minimum support is set to 1. Thus, if there are n partitions,
phase I of the algorithm takes n iterations. At the end of
phase I, all the local frequent itemsets of each partition are
merged to generate a set of all potential frequent itemsets.
In this step, the local frequent itemsets of same lengths from
all n-partitions are combined to generate the global candidate
itemsets (C

k
G), and also those global candidate itemsets has

there combined support (total support of itemset if that
itemset is present in more than one partition) associated with
it.

Phase 2:

As the above generated global candidate itemsets have least
possible frequent itemset of that partition because, during
the generation of frequent itemsets using the apriori
algorithm of each partition, the minimum local support was
set to 1. So this phase just prune the itemsets from the global
candidate itemsets list whose combined support (S(c)

Tc
)

(total support of an itemset in all the partitions) is less than
the global minimum support. So by using the above
approach the extra database pass which was needed in the

As given the partition algorithm above, here is the
example of implementing it:

Table 1
Transaction Database

A
1

A
2

A
3

A
4

A
5

Ψ
t1

1 0 0 0 1

Ψ
t2

0 1 0 1 0

Ψ
t3

0 0 0 1 1

Ψ
t4

0 1 1 0 0

Ψ
t5

0 0 0 0 1

Ψ
t6

0 1 1 1 0

4. PROPOSED EXTENSIONS TO PARTITION ALGORITHM

The following notation is used in the remainder of this
approach:

Table 2
Notations used for Advanced Partitioned Approach

Notation Meaning

Li Local Frequent Sets:
Set of Local Frequent Itemsets of Partition i.

CG
k

Global Frequent Sets:
Set of global candidate K-Itemsets.

L
i
k Local Frequent Sets:

Set of local frequent K-Itemsets in partition i.

LG Global Frequent Itemsets:
Set of global frequent Itemsets.

S(c)T
c

Combined Support
Total support of candidate set c in all partitions.

��� ������	�
����
��

�����
�
��
�����
�
���
�
���	�
��
����

COM6\D:\HARESH\11-JITKM

phase II of the previous partition approach for calculating
the support of global candidate itemsets is eliminated. So
here the modified partition algorithm reads the entire
database once during the phase I. And also, partition sizes
are chosen such that each partition can be accommodated
in the main memory.

Below is the algorithm of modified partition approach:

P = partition_database (T); N = Number of partitions;

// Phase 1

for i = 1 to n do begin

read _in_partition (T
i
 in P)

L
i
 = generate all frequent itemsets of Ti using apriori

method in main memory.

End

// Merge Phase

For (k = 2; L
i
k ≠ Φ, i = 1, 2, ………, n; k++) do begin

C
k
G = Y

i=1
nLik

End

// Phase II

LG = Φ;

for each c � CG do begin

if S(C)
Tc

 ≥ σ
LG = LG

� {S(C)}

End

Answer = LG

This above partition approach is based on the premise
that the number of items in a single transaction is
considerably smaller compared to the total items in the
transaction database (i.e. total number of items placed in
basket is less compared to total number of items available).
In addition, it expects the support of frequent itemsets
generated in a particular partition to be much high (more
than 1). Therefore, for sufficiently large partition sizes, the
number of local frequent itemsets is likely to be comparable
to the number of frequent itemsets generated for the entire
database. If the data characteristics are uniform across
partitions, then large numbers of itemsets generated for
individual partitions may be common.

5. PERFORMANCE EVALUATION OF THE PROPOSED

ALGORITHM

For the purpose of implementing the above partition based
association rule mining algorithm for finding the frequent
itemsets, the retail market basket dataset is used. These data
sets were obtained from FIMI repository for frequent itemset
mining. The advanced partition approach produces the
frequent itemsets in single pass over the database, where

as, the previous partition approach uses two passes over the
database to find the frequent itemsets. To do this, a few
additional modules, including the changes in the Apriori
module and partition module are created. The system is
implemented as a object oriented program in the java
programming language. To measure the performance of the
New Partition approach with the existing Apriori and
Partition algorithms, the datasets from the FIMI repository
are used. The nomenclature of these datasets is of the form
“TxxDzzzK”, where “xx” denotes the average number of
items present per transaction and “zzzK” denotes the total
number of transaction on “K” (1000’s). The experiments
are performed on a machine running Microsoft Windows
XP with 786 MB of RAM and a 1.6 GHz Pentium 4
Processor. Each experiment has been performed 4 times.
The values from the first run are ignored so as to avoid the
effect of the previous experiment and other database setups.
The average of the next 3 runs is taken and used for analysis.
This is done so as to avoid any false reporting of time due
to system overload or any other factors.

5.1 Comparisons of Performances of Different
Algorithms

To compare the performance of New Partition algorithm
with the Apriori and Partition algorithm three different
scenarios are considered:

Scenario 1: Performance of the New Partition
algorithm when the average number of items per transaction
increases.

Scenario 2: Performance of the New Partition
algorithm when the data set size is small and the number of
items per transactions are also small.

Scenario 3: Performance of the New Partition
algorithm when the size of data set is large and candidate
itemsets are also large.

The following subsections perform the above specified
scenarios separately:

5.1.1 Scenario 1

To compare the performance of the new partition algorithm
when the number of items per transaction increases, the
following datasets are chosen:

Table 3
Datasets

Name  T   D Size in Megabytes

T9D80K 9 80K 3.5

T13D80K 13 80K 4

�
�����
����
����
��

������
�
������
�����	��	
�
��
��
��
������	� ��

COM6\D:\HARESH\11-JITKM

Where  T is the average number of items present in
the transaction and  D is the number of transactions in a
dataset (in 1000’s).

Figures (a) and (b) shows the execution times of Apriori
and Partition and New Partition algorithms under different
minimum support.

Figures (a) and (b) also shows that as the minimum
support decreases, the execution times of the Apriori and
Partition algorithms increase because of the increase in the
total number of candidate itemsets. The New Partition
algorithm execution however is independent of the increase
or decrease of the minimum support (because the local
support for the itemsets is treated as 1 irrespective of the
global support). From figures a and b, it is evident that the
New Partition approach performance is good when the
average numbers of items in the transaction are less and the
performance of New Partition approach is less than both
the Partition and Apriori algorithm when the database size
is small and even the average number of items in the
transaction change.

Summary: Both the Partition and Apriori algorithms
execution times beat the new partition approach almost by
a magnitude of three when the database size is small and
the candidate generation increases. In other words, the new
partition approach performance will be good when the
average number of items per transaction is less. So the next
scenario sees the performance of the new partition approach
when the database size changes under the different minimum
support and when the average numbers of items per
transaction are less.

5.1.2 Scenario 2

To analyze the performance of the New Partition algorithm
when the database size increases and the minimum support
decreases, the following datasets are chosen:

Where  T are the average number of items present in
the transaction and  D are the number of transaction in a
datasets (in 1000’s).

Figures f, g, h and i shows the execution times of all
the three algorithms for different database sizes and having
minimum percentage support 2, 1, .50, .25 respectively. As
seen in the above mentioned figures, The New Partition
algorithm’s execution time eventually becomes better than
the execution times of the partition algorithm and almost
close to the execution time of the Apriori algorithm as the
database size increases and the minimum support decreases.

Summary: Scenario 3 shows that new partition
algorithm will beat the performance of the other algorithms
when the database size is huge and the minimum support
decreases (which increase the candidate set generation). The
new partition approach will beat the performance of the
normal partition algorithm when the extra time needed for
the candidate sets generation in new partition algorithm than
the normal partition algorithm will be less than the time
needed for normal partition algorithm to scan the whole
database for pruning of the candidate sets.

Figure (a): Execution times of Apriori and Partition
and New Partition algorithms corresponding to dataset of
Table 3 having 9 items per transaction under different
minimum support.

Table 4
Datasets

Name  T   D Size in Megabytes

T9D90K 9 90K 4

T9D180K 9 180K 8

T9D360K 9 360K 16

Where  T are the average number of items present in
the transaction and  D are the number of transaction in a
datasets (in 1000’s).

Figures c, d, e shows the execution times of all the three
algorithms for different database sizes and having minimum
percentage support of 2, 1, .50 respectively.

Figures c, d, e shows that the execution time of the New
Partition algorithm increases as the size of the database
increases, as do the execution times of the Apriori and the
Partition algorithms. The Apriori and the Partition algorithms
still have smaller execution times than the New Partition
algorithm.

Summary: The performance of new partition algorithm
is much less when the database sizes are small,
comparatively the performance of the new partition
approach increases as the minimum support decreases and
the database size increases.

5.1.3 Scenario 3

To compare the performance of the New Partition algorithm
when the database size is large and the minimum support
decreases, the following datasets are chosen:

Table 5
Datasets

Name  T   D Size in Megabytes

T9D10000K 9 10000K 250

T9D20000K 9 20000K 500

T9D40000K 9 40000K 1000

T9D80000K 9 80000K 2000

T9D160000K 9 160000K 4000

��! ������	�
����
��

�����
�
��
�����
�
���
�
���	�
��
����

COM6\D:\HARESH\11-JITKM

T9D80K-Figure (a) Performance T9D80K

Minimum Apriori Partition New Partition
Support (%) (Seconds) (Seconds) (Seconds)

2 76 102 449

1.5 88 116 450

1 103 141 450

.75 137 177 448

.5 154 204 451

.33 172 231 450

Figure (b): Execution times of Apriori and Partition
and New Partition algorithms corresponding to dataset of
Table 3 having 13 items per transaction under different
minimum support.

T13D80K-Figure (b) Performance T13D80K

Minimum Apriori Partition New Partition
Support (%) (Seconds) (Seconds) (Seconds)

2 109 111 509

1.5 110 117 510

1 115 124 509

.75 118 144 508

.5 128 179 509

.33 148 288 509

Figure (c): Execution times of Apriori and Partition
and New Partition algorithms corresponding to dataset of
Table 4 at min_supp of 2%

Support 2% - Figure (c) Performance Support 2%

Dataset Apriori Partition New Partition
(Seconds) (Seconds) (Seconds)

T9D90K 70 115 500

T9D180K 133 230 998

T9D360K 267 458 1997

Figure (d): Execution times of Apriori and Partition
and New Partition algorithms corresponding to dataset of
Table 4 at min_supp of 1%

Support 1% - Figure (d) Performance Support 1%

Dataset Apriori Partition New Partition
(Seconds) (Seconds) (Seconds)

T9D90K 93 160 502

T9D180K 180 320 999

T9D360K 362 638 2000

Figure (e): Execution times of Apriori and Partition
and New Partition algorithms corresponding to dataset of
Table 4 at min_supp of .50%

Support .50% - Figure (e) Performance Support .50%

Dataset Apriori Partition New Partition
(Seconds) (Seconds) (Seconds)

T9D90K 140 257 500
T9D180K 280 510 1000
T9D360K 560 1000 1998

Figure (f): Execution times of Apriori and Partition
and New Partition algorithms corresponding to dataset of
Table 5 at min_supp of 2%

Support 2% - Figure (f) Performance Support 2%
(Large Databases)

Dataset Apriori Partition New Partition
(MB) (Hours) (Hours) (Hours)

250 0.83 1.3 5
500 1.6 2.9 10

1000 3.3 6.6 20
2000 6.6 14.9 40
4000 13.2 34 80

Figure (g): Execution times of Apriori and Partition
and New Partition algorithms corresponding to datasets of
Table 5 at min_supp of 1%

Support 1% - Figure (g) Performance Support 1%
(Large Databases)

Dataset Apriori Partition New Partition
(MB) (Hours) (Hours) (Hours)

250 1.1 1.8 5
500 2.3 4.1 10

1000 5 9.3 20
2000 10.5 21.1 40
4000 22.1 48.6 80

Figure (h): Execution times of Apriori and Partition
and New Partition algorithms corresponding to datasets of
Table 5 at min_supp of .50%

Support 1% - Figure (g) Performance Support 1%
(Large Databases)

Dataset Apriori Partition New Partition
(MB) (Hours) (Hours) (Hours)

250 1.7 2.8 5
500 3.6 6.4 10

1000 7.7 14.4 20
2000 16.2 32.2 40
4000 34 74.5 80

�
�����
����
����
��

������
�
������
�����	��	
�
��
��
��
������	� ��"

COM6\D:\HARESH\11-JITKM

Figure (i): Execution times of Apriori and Partition
and New Partition algorithms corresponding to datasets of
Table 5 at min_supp of .25%

Support .25% - Figure (g) Performance Support .25%
(Large Databases)

Dataset Apriori Partition New Partition
(MB) (Hours) (Hours) (Hours)

250 3.4 3.7 5
500 7.2 8.5 10

1000 15.2 19.1 20

2000 32 43 40

4000 68 98 80

6. CONCLUSION

In this paper a new association rule mining algorithm which
uses the partition approach for mining the frequent itemsets
in a single pass over the database has been proposed.
Experiments have been performed on real databases
obtained from FIMI repository and the results have been
presented. The results show that time taken for the database
scan is more than the time taken for candidate generation
when the database size is large, which provides evidence
that, focus to decrease the database access time is a viable
approach to the association rule mining.

REFERENCES

[1] R. Agrawal, T. Imielinski and A. Swami. Mining Association
Rules Between Sets of Items in Large Databases. In : Proc.
1993 ACM-SIGMOD International Conference on
Management of Data, Washington, D.C., (1993) 207-216.

[2] Rakesh Agrawal and R. Srikant. Fast Algorithm for Mining
Association Rules in Large Databases, Proceedings of the
20th International Conference on Very Large Databases,
Santigo, Chile, (1994), 487-499.

[3] C. C. Aggarwal and P. S. Yu. Data Mining Techniques for
Associations, Clustering and Classification. Proceedings of
the Third Pacific-Asia Conference, PAKDD-99, Beijing,
China, (1999) 13-23.

[4] A. T. Bjorvand. Object Mining: A Practical Application of
Data Mining for the Construction and Maintenance of
Software Components. Proceedings of the Second European
Symposium, PKDD-98, Nantes, France, (1998) 121-129.

[5] Frans Coenen, Graham Goulbourne, and Paul Leng.
Computing Association Rules Using Partial Totals. 5th

European Conference, PKDD 2001, Freiburg, Germany,
Proceedings, (2001).

[6] J. Han, J. Pei, and Y. Yin., Mining Frequent Patterns
Without Candidate Generation. In Proceedings of ACM
SIGMOD International Conference on Management of
Data, Dallas, TX, (2000) 1-12.

[7] M. Houtsma and A. Swami. Set Oriented Mining for
Association Rules in Relational Databases. In Proceedings
of 11th IEEE International Conference on Data Engineering,
(1995) 25-33.

[8] Petra Hunzikar, Andreas Maier, Alex Nippe, Markus Tresch,
Douglas Weers and Peter Zemp. Data Mining at a Major
Bank: Lessons from a Large Marketing Application.
Proceedings of the Second European Symposium, PKDD-
98, Nantes, France, (1998) 345-351.

[9] D. Landau, R. Feldman, O. Zamir, Y. Aumann, M. Fresko,
Y. Lindell and O. Lipshtat. Text Vis: An Integrated Visual
Environment for Text Mining. Proceedings of the Second
European Symposium, PKDD-98, Nantes, France, (1998)
56-64.

[10] H. Mannila, H. Toivonen and A. Inkeri Verkamo. Efficient
Algorithms for Discovering Association Rules. AAAI
Workshop on Knowledge Discovery in Databases (KDD-
94), (1994) 181-192.

[11] Jong Soo. Park, Ming-Syan and Philips S. Yu. Using a Hash-
Based Method with Transaction Trimming for Mining
Association Rules. IEEE Transactions on Knowledge and
Data Engineering, 9(5) (1997).

[12] A. Savasere, E. Omieccinski and S. Navathe. An Efficient
Algorithm for Mining Association Rules in Large Databases.
Proceedings of the 21st International Conference on Very
Large Databases, Zurich, Switzerland, (1995) 432-443.

[13] H. Toivonen. Sampling Large Databases for Association
Rules. In Proceedings of International Conference on Very
Large Databases, Bombay, India, (1996) 134-145.

[14] Akhilesh Tiwari, R. K. Gupta, D. P. Agrawal. Mining
Frequent Itemsets Using Prime Number Based Approach.
In Proc. 3rd International Conference on Advanced
Computing and Communication Technologies (ICACCT),
India, (2008) 138-141.

[15] Show-Jane Yen and Arbee L. P. Chen. A Graph–Based
Approach for Discovering Various Types of Association
Rules. IEEE Transactions on Knowledge and Data
Engineering, 13(5) (2001) 839-845.

